Скачать 3.62 Mb.
|
§ 3.9. Контрольные испытания водоводов и сетей Контрольные испытания водопроводных линий производятся с целью определения их технического состояния (пропускной способности, напоров, места и величины утечек). Испытываются водоводы, магистральные и разводящие сети. В тех случаях, когда по тем или иным причинам во время испытаний использование постоянного оборудования системы водоснабжения (насосного и водомерного оборудования и др.) невозможно, применяют передвижные установки. В ходе контрольных гидравлических испытаний водопроводов производятся следующие работы: манометрическая съемка, измерение гидравлических сопротивлений трубопроводов, контрольные испытания на утечку, снятие фактических характеристик насосов. При манометрической съемке измеряют свободные напоры в различных точках сети. В начальный период эксплуатации такая съемка позволяет уточнить расчетную схему сети. Для съемки рекомендуется использовать образцовые манометры класса 0,4. Они устанавливаются в колодцах, наиболее близких к узлам сети, где есть пожарные гидранты или заранее предусмотрены штуцера для подключения манометров. Манометрическая съемка должна проводиться одновременно во всех испытываемых точках, по возможности при неизменных условиях работы сети и водоводов в часы максимального и минимального водопотребления. Измерение гидравлических сопротивлений производят, чтобы определить зарастание труб и соответственно их пропускную способность. Методика проведения испытаний зависит от диаметра трубопроводов и осуществляется следующими способами: сбросом воды через один пожарный гидрант; сбросом воды через несколько последовательно расположенных пожарных гидрантов; сбросом воды через стендер, снабженный специальной насадкой; "способом трех манометров", разработанным АКХ им. К.Д.Памфилова. Первым способом рекомендуется проводить испытания на линиях сети диаметром до 300 мм, так как измеряемый водомерами расход воды может быть не более 20-30 л/с. Для измерения выбирают участок, по длине которого располагается не менее трех пожарных гидрантов (рис.3.5). На первых двух устанавливают стендеры с образцовыми манометрами для фиксации напора в этих точках и определения по ним потерь напора. Вместо стендеров могут использоваться специально врезанные штуцера с кранами. На третьем гидранте монтируют стендер, через который производится сброс воды. Сброс определяется либо по объему (например, путем заполнения цистерн поливочных машин), либо с помощью водомеров. Во время испытания все водопотребители на испытываемом участке отключаются, задвижка закрывается. Надежность закрытия задвижек проверяется до начала измерений по показаниям манометров ![]() ![]() ![]() ![]() Рис.3.5. Схема измерения гидравлических сопротивлений труб диаметром до 300 мм ![]() ![]() ![]() ![]() Фактическое удельное сопротивление трубопровода определяется по формуле ![]() где ![]() ![]() ![]() ![]() Степень зарастания испытываемого трубопровода будет характеризоваться отношением ![]() где ![]() ![]() ![]() Погрешности измерения ![]() Второй и третий способы являются модификациями первого. Они позволяют путем увеличения контролируемого расхода измерять с погрешностью 5-10% сопротивления линий диаметром до 400 мм. Измерения гидравлических сопротивлений четвертым способом производятся следующим образом. Выбирается участок, на котором устанавливаются три манометра ![]() ![]() ![]() ![]() ![]() ![]() Рис.3.6. Схема измерения гидравлических сопротивлений труб методом трех манометров Удельное сопротивление ![]() ![]() ![]() где ![]() ![]() Уравнение решается относительно фактического удельного сопротивления трубопровода: ![]() где ![]() ![]() ![]() ![]() При испытаниях на участке между манометрами ![]() ![]() ![]() ![]() Контрольные испытания на утечку могут быть проведены одним из следующих способов: с помощью водомеров; по падению уровня воды в баке водонапорного сооружения или в стояке; с помощью манометров; с помощью контактных индикаторов давления, действующих постоянно во время эксплуатации сетей; аналитически. Возможно несколько вариантов контрольных испытаний с помощью водомеров: для определения утечек воды устанавливаются два водомера (рис.3.7): водомер 2 - на насосной станции непосредственно после насоса, водомер 5 - в конце испытываемого участка; разность их показаний дает величину утечки; перед испытанием водомеры должны быть протарированы; ![]() Рис.3.7. Схема определения утечки воды водомерами 1 - насос; 2, 5 - водомеры; 3 - манометр; 4 - трубопровод; 6 - водонапорная башня если нет возможности или трудно смонтировать водомер на проверяемой линии, то его устанавливают на отводной линии (рис.3.8) сразу же после насоса или передвижной насосной установки; задвижка 6 закрывается; количество воды, поступающей в резервуар 5, замеряется; разность между показаниями водомера и количеством воды, замеренным в резервуаре, дает величину утечки; во время испытаний вода из резервуара не должна расходоваться; ![]() Рис.3.8. Схема определения утечек воды водомером, поставленным на обводной линии 1 - насос; 2 - водомер; 3 - манометр; 4 - трубопровод; 5 - водонапорный резервуар; 6 - задвижка задвижка 5 на начальном и задвижка 6 на конечном участках перекрываются (рис.3.9); величина утечки определяется по водомеру; по манометру следят за рабочим давлением. ![]() Рис.3.9. Схема определения утечки воды манометром 1 - насос; 2 - водомер; 3 - манометр; 4 - трубопровод; 5, 6 - задвижки Определение утечек вторым способом показано на рис.3.10. Перед испытанием задвижка 7 закрывается и бак водонапорной башни наполняется водой. После этого закрывают задвижку 2 у насоса и наблюдают за уровнем воды в баке при открытой задвижке 6 или показаниями манометра 3 в течение определенного времени. Величина утечки определяется по падению уровня воды в баке башни за время наблюдения (точка ![]() ![]() Рис.3.10. Схема определения утечки воды манометром, установленным на насосной станции 1 - насос; 2, 6, 7 - задвижки; 3 - манометр; 4 - трубопровод; 5 - водонапорная башня Третьим способом величина утечки определяется по падению стрелки манометра. Зная, что 0,1 МПа соответствует 10,33 м вод.ст. (при барометрическом давлении воздуха 760 мм рт.ст.), можно по падению показаний манометра и по чертежу продольного профиля напорной линии определить, на какой длине труба освободилась от воды. Величина утечки определится по формуле ![]() ![]() ![]() Замеры утечки воды этим способом можно производить тогда, когда конечные точки трубопровода расположены выше, чем место установки водомера, относительно которого рассчитываются падение давления или свободные напоры. Свободные напоры измеряются в заранее установленных (контрольных) точках на водопроводной сети, обычно в характерных точках и в узлах магистралей, разводящих кольцевые и тупиковые сети. В качестве контрольных точек могут быть использованы пожарные гидранты на сети или специально оборудованные стационарные манометрические посты. Контрольные испытания можно осуществлять непрерывно путем автоматического контроля за определенными параметрами и подачи сигналов в соответствующий командный (или диспетчерский) пункт. Наиболее простым способом контроля (четвертый способ) является применение контактных индикаторов давления, дистанционных расходомеров с трубами Вентури или индукционных расходомеров (ИР-1). Связь датчиков с исполнительными механизмами осуществляется с помощью кабеля. Расстояние действия системы определяется сечением жил: при сечении 1,5 мм ![]() ![]() ![]() Недостатком системы с трубами Вентури является неизбежность дополнительных потерь за счет местных сопротивлений, создаваемых вставками Вентури. Аналитическим (расчетным) способом с достаточной точностью может быть определено место утечки ![]() ![]() ![]() ![]() ![]() Рис.3.11. Схема к определению точки разрыва водовода (места утечки ![]() Так как ![]() ![]() Приравнивая уравнения (3.23) и (3.25) и решая их относительно ![]() ![]() В уравнениях (3.23)-(3.26) и на рис.3.11 принято: ![]() ![]() ![]() ![]() ![]() ![]() Значение ![]() ![]() Места утечек в трубопроводах, уложенных в землю, можно определить акустическими или звуковыми способами. В качестве приборов, улавливающих шум, создаваемый водой при вытекании ее из поврежденных трубопроводов, используются аквафоны, геофоны, микрофоны, стетоскопы, а также обычные металлические стержни. При определении места утечки коробки аквафонов, микрофонов или геофонов размещаются на трассе водопровода по его оси на расстоянии 2-5 м друг от друга и в процессе обследования передвигаются вдоль него. При отсутствии указанных приборов места утечек в трубопроводах можно определить с помощью заостренных металлических стержней диаметром 20-25 мм, погружая их в грунт по направлению водопроводной линии. Прослушивание производится непосредственно на слух или с помощью усиливающей мембранной трубки. Для усиления шума, создаваемого вытекающей из трубопровода водой, в трубопровод вводят сжатый воздух, который создает резкий, хорошо воспринимаемый микрофонами шум. Эффект применения звуковых (слуховых) приборов зависит от местных условий, технических данных аппаратуры и опыта оператора. Затухание звуковой волны в грунте имеет квадратичную зависимость от расстояния, причем увеличение глубины прокладки трубопроводов повышает требования к чувствительности и избирательности аппаратуры. При залегании трубопроводов более чем на 4 м этот метод не применим, за исключением наличия повреждений, имеющих большие уровни шумов. На работу этих приборов оказывают влияние шумы города и источники электромагнитных излучений. В некоторых случаях эти шумы превышают шумы аварий и поэтому работы по определению мест течи приходится производить в ночное время. В качестве таких приборов - искателей повреждений можно назвать следующие: "Гидролюкс ХП-66", "Гидролюкс ХП-2000", "Аквадрон" фирмы "Северин" и "Себа-Динатроник" (ФРГ), прибор фирмы "Фишер" (США), "Гидродефект" (ВНР), ЛСИ-101 завода РФТ (ГДР) и ПТ-2 и ТЭА (СССР). В настоящее время для определения утечек на вооружение эксплуатационных служб поступают установки с корреляторами шума: ДФ-02 и ДФ-3000 фирмы "Метравиб" (Франция); КС-1000 фирмы "Фудзи Тэком" (Япония); МК-2 фирмы "Пальмес" (Англия). Названные установки могут применяться для обнаружения утечек на водопроводных трубопроводах любых видов (стальных, чугунных, асбестоцементных, свинцовых, пластмассовых), на напорных трубопроводах канализации и водостоков, на газопроводах низкого, среднего и высокого давления и других промышленных трубопроводах. Корреляционный метод обеспечивает высокую точность и надежность обнаружения мест утечек по сравнению с ранее применяемыми методами, основанными на улавливании шумов, образующихся в местах утечек из трубопроводов. Принцип действия корреляторов основан не на определении звука, а на сравнении и нахождении по длине трубопровода звуковых сигналов. Прибор определяет разницу во времени прихода двух подобных звуковых сигналов, которые фиксируются первичными преобразователями, установленными на противоположных концах испытываемого участка трубопровода (рис.3.12). В коррелятор вводятся табличные данные скорости звука для данного трубопровода и расстояние между первичными преобразователями, после чего он автоматически производит вычисление расстояния от местонахождения утечки до одного из преобразователей по формуле ![]() где ![]() ![]() ![]() ![]() ![]() Рис.3.12. Определение течи на трубопроводах корреляционным методом ![]() ![]() ![]() ![]() ![]() ![]() ![]() Коррелятор одновременно может сопоставлять множество сдвинутых во времени точек и постоянно выдает на дисплей результаты вычислений параметров корреляции. С помощью метки на экране дисплея отмечается максимум корреляции, после чего на цифровом индикаторе мгновенно выдается расстояние до утечки. Выбор предварительного рабочего расстояния может колебаться от 100 до 800 м, требуемое напряжение электрического тока 12 В, сила тока 6,2-6,8 А. § 3.10. Особые случаи эксплуатации водоводов и сетей Гидравлические удары. Если движущийся в трубопроводе поток жидкости мгновенно остановить (например, перекрыть краном, задвижкой или остановить насос), то в трубопроводе произойдет гидравлический удар. Задача о гидравлическом ударе впервые была решена русским ученым Н.Е.Жуковским. Масса жидкости, движущаяся по трубопроводу, при резком перекрытии его продолжает движение по инерции. Вначале остановится та часть, которая придет в непосредственное соприкосновение с препятствием, затем начнут останавливаться последующие слои жидкости, уплотняя слои, остановившиеся впереди. В результате этого уплотнения давление в остановившейся массе жидкости будет возрастать. Когда энергия движения жидкости будет полностью использована в направлении ее движения, сжатая масса жидкости станет расширяться и возникнет обратная, отраженная, волна движения массы жидкости. Зоны остановившейся жидкости и области повышенного давления распространяются по трубопроводу навстречу движущемуся потоку со скоростью распространения звука в воде. Для расчета ударного повышения давления может быть применена формула Жуковского ![]() где ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Скорость звука в трубопроводе определяется по выражению ![]() где ![]() ![]() ![]() ![]() Значение модуля упругости жидкости ![]() ![]() Скорость распространения звука (ударная волна) в чугунных трубах в зависимости от их диаметра и толщины стенок принимают следующей:
Интересно отметить, что скорость распространения ударной волны в резиновых трубках составляет всего 30 м/с. Проведенные за последние годы исследования показывают, что величина ударного давления зависит не только от скорости воды в трубопроводе, но и от величины статического давления в первоначальный момент и потерь напора на трение и местные сопротивления. Опытами установлено, что быстрое закрытие крана или задвижки почти всегда приводит к разрыву сплошности потока воды или отрыву его от затвора с образованием пустот, заполненных паром. Последующее поступление воды в разреженное пространство приводит к ударному повышению давления, и если потери напора невелики, то величина действительного ударного давления ![]() ![]() ![]() ![]() При подаче воды в резервуары, расположенные на более высоких отметках, чем насосная станция, явление гидравлического удара возможно в момент внезапной остановки насоса. При остановке насоса жидкость сначала двигается в прежнем направлении и у насоса создается пониженное давление. Дойдя до резервуара, волна поворачивает обратно и к насосу подходит уже с повышенным давлением. Если обратный клапан отсутствует, то вода проходит через насос и начинает вращать его в обратную сторону*. Кроме того, при обратном движении воды вымываются случайно попавшие в водовод предметы, которые могут повредить насос. Чтобы не допустить этого явления, после насоса, как правило, ставят обратный клапан, однако обратный клапан закрывается очень быстро, что приводит к созданию повышенных давлений (гидравлического удара). Для предотвращения этого закрывание клапана следует производить медленно, и полное закрывание должно произойти только после возвращения обратной волны. _____________________ * Опыты ВНИИ ВОДГЕО показали, что обратное вращение колеса насоса не создает опасных явлений. При длине трубопровода ![]() ![]() ![]() Время закрывания обратного клапана можно отрегулировать с помощью клапана - гасителя гидравлических ударов. Роль гасителей удара могут выполнять также гидравлические или электрические задвижки с отрегулированным временем их закрытия. а также пружинные и рычажно-грузовые предохранительные клапаны. Самым простым устройством для предотвращения гидравлических ударов могут служить водяные колонны, но они удобны только при небольших напорах. Для ослабления гидравлических ударов применяются воздушные котлы, которые могут устанавливаться как у насосов, так и на напорных участках водоводов и сетей, а также вставки из труб, скорость распространения ударной волны в которых значительно ниже, чем в стальных и чугунных трубах. Электрохимическая коррозия металлических трубопроводов. Согласно электрохимической теории коррозии между отдельными частями поверхности металлов (в данном случае поверхности труб, уложенных в грунт) и электролитом (грунт, грунтовые воды) вследствие неодинакового состояния поверхности металла, различия концентрации газов, особенно кислорода, у поверхности металла возникает термопара, т.е. местный элемент. Участок с меньшим потенциалом будет анодом, с большим - катодом. На анодных участках положительно заряженные ионы металла переходят в электролит (грунтовые воды, грунт), вызывая разрушение металла. Для предохранения металла труб от разрушения применяют катодную или анодную защиту, устраивают металлические и химические покрытия, окрашивают трубы, используют также и комбинированные методы, например битумное покрытие и катодную защиту, которые в настоящее время получили наиболее широкое распространение. При катодной защите (рис.3.13) вся поверхность трубопровода делается катодом, а анодом служат зарытые вблизи трубопровода стальные предметы (куски рельсов, старых труб и др.). Трубопровод подсоединяется к отрицательному полюсу источника тока, а кусок металла - к положительному (активная защита). Разрушаться будет анод (заземление). Расход энергии составляет около 2 кВт·ч в сутки на 100 м ![]() ![]() Рис.3.13. Принцип действия катодной защиты 1 - источник тока; 2 - анод (старые трубы или рельсы); 3 - защищаемый трубопровод Катодную защиту применяют как дополнение к битумной, так как при непокрытом битумом трубопроводе расход электроэнергии настолько велик, что катодная защита становится экономически невыгодной. В качестве источников электроэнергии могут использоваться генераторы постоянного тока, приводимые в движение двигателями внутреннего сгорания, располагаемыми в отдельных пунктах трассы. В качестве источников тока можно применить ветросиловые установки с автоматическим включением аккумуляторов при безветрии. Катодная защита возможна и без применения постороннего источника электроэнергии - так называемая катодная защита автономными анодами (пассивная защита). В этом случае для защиты трубопроводов вблизи них зарывают металл, имеющий более отрицательный электрохимический потенциал, чем потенциал стали. Трубу соединяют с этим металлом (анодом) проводом. В качестве анодов применяют круглые стержни из магния, цинка и их сплавов длиной 50-120 см, устанавливаемые вертикально. Потенциал защищаемого металла при катодной поляризации будет сдвигаться в отрицательную сторону относительно окружающего электролита. Защитный потенциал стали, при котором коррозия отсутствует, равен 484-584 мВ (относительно нормального водородного электрода). Результатом токообразующей реакции является растворение анодного металла с образованием положительно заряженных ионов. Процесс идет по двум реакциям, на каждую из которых приходится 50% общего расхода анодного металла: Ме (анод) ![]() ![]() ![]() Ме (анод) + 2Н ![]() ![]() ![]() ![]() ![]() Далее идет реакция, протекающая вблизи стенок трубопровода: 2Н ![]() ![]() ![]() ![]() ![]() ![]() Из уравнений (3.30)-(3.32) следует, что прикатодный слой воды около стенок трубопровода защелачивается. Если в соседних слоях грунтовой воды содержатся сульфаты или бикарбонаты SO ![]() ![]() Са ![]() ![]() ![]() ![]() ![]() ![]() Мg ![]() ![]() ![]() ![]() ![]() ![]() Мg ![]() ![]() ![]() ![]() ![]() Образующийся защитный слой [СаСО ![]() ![]() Защита (катодная, анодная) должна осуществляться комплексно для всех металлических трубопроводов (водопровод, газопровод, теплопровод), уложенных в грунтах и находящихся в непосредственной близости друг от друга. Защита одного из них может привести к усиленной коррозии других трубопроводов. Блуждающие токи. Если металлический трубопровод уложен вблизи трамвайных путей, электрических железных дорог, метрополитена, силовых установок, кабелей постоянного тока и т.д., то он подвергается разрушению вследствие действия блуждающих токов. В тех местах, где ток входит в трубопровод, он не разрушает его, так как эти места являются катодными. Там же, где ток выходит из трубопровода, поверхность последнего разрушается. В этом случае, как и при почвенной коррозии, ток уносит в почву положительно заряженные ионы металла (рис.3.14). ![]() Рис.3.14. Схема действия блуждающих токов 1 - троллейный провод; 2 - рельсы трамвая; 3 - тяговый ток ![]() ![]() ![]() Основной мерой по предотвращению разрушения труб от действия блуждающих токов является устранение самих блуждающих токов. Для этой цели обеспечивают непрерывность рельсовых путей, устраивают отсасывающие фидера от рельсов, увеличивают сопротивление в местах перехода тока от рельсов в почву и т.п. Из мер, принимаемых непосредственно для защиты трубопровода, можно указать на устройство усиленной изоляции, засыпку трубопроводов со всех сторон песком и изолирование стыков с резиновыми прокладками с целью разрыва электрической непрерывности трубопровода. Блуждающие токи могут оказывать воздействие на трубопроводы, расположенные на расстоянии до 500 м от источника блуждающих токов. Защита трубопроводов от блуждающих токов, как и при электрохимической коррозии, также должна производиться комплексно для всех трубопроводов, расположенных в непосредственной близости друг от друга. |
![]() |
Руководство по изучению рыб (преимущественно пресноводных) Четвертое... Учитывая массовые запросы на эту книгу, И. Ф. Правдин готовил к печати четвертое, значительно переработанное и дополненное издание.... |
![]() |
Социология: искусство задавать вопросы (издание второе переработанное и дополненное) Социология: искусство задавать вопросы. Издание 2-е, переработанное и дополненное. М., 1998 |
![]() |
Учебно-методическое пособие. Издание второе, переработанное и дополненное.... «Доврачебная помощь в туристском походе». Учебно-методическое пособие. Издание второе, переработанное и дополненное. – Йошкар-Ола:... |
![]() |
Программы 5-9 классы Для учителей общеобразовательных организаций... Рекомендации по материально-техническому обеспечению учебного предмета «Английский язык» |
![]() |
Аллен Астро- физические величины Переработанное и дополненное издание... Книга профессора Лондонского университета К. У. Аллена приобрела широкую известность как удобный и весьма авторитетный справочник.... |
![]() |
Дом колдуньи Значительно переработанное, дополненное и исправленное издание известного труда лингвиста и психотерапевта Ирины Черепановой посвящено... |
![]() |
Учебник -3 переработанное издание Информатика: Учебник -3 переработанное издание / Под ред проф. Н. В. Макаровой М.: Финансы и статистика 1999. 768 с |
![]() |
Ирина Черепанова дом колдуньи Значительно переработанное, дополненное и исправленное издание известного труда лингвиста и психотерапевта Ирины Черепановой посвящено... |
![]() |
Практикум по конфликтологии 2-е издание, дополненное и переработанное Главный редактор Заведующий редакцией Руководитель проекта Литературный редактор Художественный редактор Корректор Верстка |
![]() |
Г. В. Морозова 3-е издание, переработанное и дополненное Боброва И. Н. — доктор медицинских наук, профессор, заслуженный деятель науки Российской Федерации, научный консультант Государственного... |
![]() |
Курдюмов Николай Умный огород в деталях 2-е издание, переработанное и дополненное В своей книге ученый-агроном Н. И. Курдюмов делится с читателями своим опытом, приобретенным за годы практической деятельности |
![]() |
И. Н. Горелов К. Ф. Седов Илья Наумович Горелов, Константин Федорович Седов. Основы психолингвистики. Учебное пособие. Третье, переработанное и дополненное... |
![]() |
Настоящее сокращенное и отредактированное издание «Временных методических... Временные методические указания по расчету выбросов загрязняющих веществ в атмосферный воздух предприятиями деревообрабатывающей... |
![]() |
Бассейн Амура: осваивая сохранить Бассейн Амура: осваивая – сохранить. Издание второе (дополненное и переработанное). Хабаровск: ООО "Архипелаго Файн Принт", 2007.... |
![]() |
Человек умирает. Что делать? Москва, 2016 Издание второе, переработанное, дополненное Мы попробовали собрать под одной обложкой и справочную, и медицинскую информацию, и советы о помощи по организации похорон, и материалы,... |
![]() |
Пояснительная записка рабочая программа по образовательной области «Речевое развитие» Фгос дошкольного образования, аооп доу, Примерной адаптированной основной образовательной программы для детей с тяжелыми нарушениями... |
Поиск |